

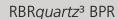
BOTTOM PRESSURE RECORDER

10ppb RESOLUTION FULL OCEAN DEPTH TSUNAMI MONITORING

RBR quartz³

The RBRquartz³ BPR (bottom pressure recorder) uses an integrated Paroscientific Digiquartz® pressure sensor for the best-in-class initial accuracy, resolution and low drift performance. The RBRquartz³ BPR is intended for long-term autonomous or real-time observations of water level, tides, and tsunamis in deep water. The high resolution (10ppb) and accuracy (0.01% FS) quartz pressure sensor is able to detect minuscule changes in water level from the bottom of the ocean. Continuous measurements allow the RBRquartz³ BPR to be used for tsunami detection and early-warning systems when connected to a cabled real-time network. Flexible measurement schedules and configurable integration times permit applications for tide and sea level measurements when powered on internal batteries. The RBRquartz³ BPR has a large memory capacity, sufficient power for extended deployments, and USB-C download for large data files.

FEATURES



The RBRquartz³ BPR uses the proven Digiquartz® pressure sensor to achieve high resolution measurements for full ocean depth water level and tide observations. The RBRquartz³ BPR can record instantaneous pressure measurements, average pressure measurements over specified sampling duration, and burst-sample pressure at up to 16Hz. A high accuracy marine temperature sensor is standard with every RBRquartz³ BPR and temperature data are recorded with each pressure measurement.

The RBR*quartz*³ BPR is ideal for applications such as tsunami detection and warning systems, long-term water level studies, and high-accuracy depth sensing in ROVs and AUVs. Online applications are enabled via RS-232 or RS-485 communications. Data transmission to a surface buoy can be performed reliably using the RBR inductive modem system. Dataset export to Matlab, Excel, OceanDataView[®], or text files makes post processing with your own algorithms effortless.

BOTTOM PRESSURE RECORDER

FULL OCEAN DEPTH TSUNAMI MONITORING

Specifications

Physical

Storage:
Power:
External power:
Communication:
Clock drift:
Depth rating:
Housing:

Clock drift:
Depth rating:
Housing:
Size:
Weight:

240M readings 8 AA cells 4.5-30 VDC

USB-C or RS-232/485 ±60 seconds/year 10,000m Titanium

~540mm x Ø60mm ~3.4kg in air ~1.7kg in water

Temperature

Range: -5 to 35° C
Accuracy: $\pm 0.002^{\circ}$ C
Time constant: 30s (embedded)
Typical stability: 0.002° C/year

Depth

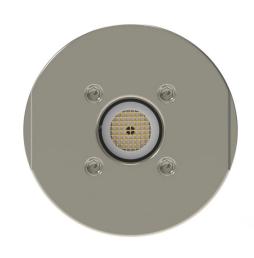
Range: Initial accuracy: Resolution: 1350 / 2000 / 4000 / 7000 dbar ±0.01% FS

10ppb (at 1Hz sampling rate)

Deployment Estimates

Lithium iron cells

Sampling Period	Time	Samples
2s	35 days	1.5M
10s	175 days	1.5M
60s	2.5 years	1.5M
16Hz	35 days	48M


RBRfermata alkaline pack

Sampling Period	Time	Samples
2s	3 years	50M
16Hz	95 days	135M

95 Hines Road Ottawa, Ontario Canada K2K 2M5

+1 613 599 8900 info@rbr-global.com rbr-global.com

